Publications
How to cite / acknowledge the Neural Microsystems Platform
Authorship:
Fondation Campus Biotech Geneva (FCBG) adheres to the basic rules of Scientific Integrity regarding authorship of scholar work.
All articles and publications that use any FCBG resources (equipment, protocol assistance and expertise, analyses, …) must have an author directly affiliated with FCBG when the staff member:
- have made an essential contribution to the planning, carrying out, evaluation and verification of the research work;
- have participated in the writing of the manuscript;
- and have approved the final version of the manuscript.
Acknowledgements:
When the platform provides a platform contribution (simple data acquisition, assistance in setting up procedures for presentation and collection of behavioral data, etc.), only a sentence in the acknowledgments is needed. For acknowledgements in articles, publications, projects, presentations…, the following text can be added:
“This study was supported by the Neural Microsystems Platform, Fondation Campus Biotech Geneva, Geneva, Switzerland.”
5649449
HSR6CV29
1
apa
50
default
desc
year
1
29453
https://nmp.fcbg.ch/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%22DMKR7VLY%22%2C%22library%22%3A%7B%22id%22%3A5649449%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Martinelli%20et%20al.%22%2C%22parsedDate%22%3A%222024-10-18%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EMartinelli%2C%20E.%2C%20Akouissi%2C%20O.%2C%20Liebi%2C%20L.%2C%20Furfaro%2C%20I.%2C%20Maul%26%23xE0%3B%2C%20D.%2C%20Savoia%2C%20N.%2C%20Remy%2C%20A.%2C%20Nikles%2C%20L.%2C%20Roux%2C%20A.%2C%20Stoppini%2C%20L.%2C%20%26amp%3B%20Lacour%2C%20S.%20P.%20%282024%29.%20The%20e-Flower%3A%20A%20hydrogel-actuated%203D%20MEA%20for%20brain%20spheroid%20electrophysiology.%20%3Ci%3EScience%20Advances%3C%5C%2Fi%3E%2C%20%3Ci%3E10%3C%5C%2Fi%3E%2842%29%2C%20eadp8054.%20%3Ca%20class%3D%27zp-DOIURL%27%20target%3D%27_blank%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1126%5C%2Fsciadv.adp8054%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1126%5C%2Fsciadv.adp8054%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22The%20e-Flower%3A%20A%20hydrogel-actuated%203D%20MEA%20for%20brain%20spheroid%20electrophysiology%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eleonora%22%2C%22lastName%22%3A%22Martinelli%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Outman%22%2C%22lastName%22%3A%22Akouissi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luca%22%2C%22lastName%22%3A%22Liebi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ivan%22%2C%22lastName%22%3A%22Furfaro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Desir%5Cu00e9e%22%2C%22lastName%22%3A%22Maul%5Cu00e0%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nathan%22%2C%22lastName%22%3A%22Savoia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Antoine%22%2C%22lastName%22%3A%22Remy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Laetitia%22%2C%22lastName%22%3A%22Nikles%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Adrien%22%2C%22lastName%22%3A%22Roux%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luc%22%2C%22lastName%22%3A%22Stoppini%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22St%5Cu00e9phanie%20P.%22%2C%22lastName%22%3A%22Lacour%22%7D%5D%2C%22abstractNote%22%3A%22Traditional%20microelectrode%20arrays%20%28MEAs%29%20are%20limited%20to%20measuring%20electrophysiological%20activity%20in%20two%20dimensions%2C%20failing%20to%20capture%20the%20complexity%20of%20three-dimensional%20%283D%29%20tissues%20such%20as%20neural%20organoids%20and%20spheroids.%20Here%2C%20we%20introduce%20a%20flower-shaped%20MEA%20%28e-Flower%29%20that%20can%20envelop%20submillimeter%20brain%20spheroids%20following%20actuation%20by%20the%20sole%20addition%20of%20the%20cell%20culture%20medium.%20Inspired%20by%20soft%20microgrippers%2C%20its%20actuation%20mechanism%20leverages%20the%20swelling%20properties%20of%20a%20polyacrylic%20acid%20hydrogel%20grafted%20to%20a%20polyimide%20substrate%20hosting%20the%20electrical%20interconnects.%20Compatible%20with%20standard%20electrophysiology%20recording%20systems%2C%20the%20e-Flower%20does%20not%20require%20additional%20equipment%20or%20solvents%20and%20is%20ready%20to%20use%20with%20preformed%203D%20tissues.%20We%20designed%20an%20e-Flower%20achieving%20a%20curvature%20as%20low%20as%20300%20micrometers%20within%20minutes%2C%20a%20value%20tunable%20by%20the%20choice%20of%20reswelling%20media%20and%20hydrogel%20cross-linker%20concentration.%20Furthermore%2C%20we%20demonstrate%20the%20ability%20of%20the%20e-Flower%20to%20detect%20spontaneous%20neural%20activity%20across%20the%20spheroid%20surface%2C%20demonstrating%20its%20potential%20for%20comprehensive%20neural%20signal%20recording.%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20e-Flower%20is%20a%20soft%2C%20cell%20culture%5Cu2013actuated%20microelectrode%20array%20enveloping%203D%20neural%20tissues%20and%20recording%20their%20activity.%22%2C%22date%22%3A%222024-10-18%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1126%5C%2Fsciadv.adp8054%22%2C%22ISSN%22%3A%222375-2548%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.science.org%5C%2Fdoi%5C%2F10.1126%5C%2Fsciadv.adp8054%22%2C%22collections%22%3A%5B%22HSR6CV29%22%5D%2C%22dateModified%22%3A%222024-11-28T14%3A08%3A16Z%22%7D%7D%2C%7B%22key%22%3A%227RAC4ZSF%22%2C%22library%22%3A%7B%22id%22%3A5649449%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Mariello%20et%20al.%22%2C%22parsedDate%22%3A%222024-08-28%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EMariello%2C%20M.%2C%20Rosenthal%2C%20J.%20D.%2C%20Cecchetti%2C%20F.%2C%20Gao%2C%20M.%2C%20Skrivervik%2C%20A.%20K.%2C%20Leterrier%2C%20Y.%2C%20%26amp%3B%20Lacour%2C%20S.%20P.%20%282024%29.%20Wireless%2C%20battery-free%2C%20and%20real-time%20monitoring%20of%20water%20permeation%20across%20thin-film%20encapsulation.%20%3Ci%3ENature%20Communications%3C%5C%2Fi%3E%2C%20%3Ci%3E15%3C%5C%2Fi%3E%281%29%2C%207443.%20%3Ca%20class%3D%27zp-DOIURL%27%20target%3D%27_blank%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41467-024-51247-3%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41467-024-51247-3%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Wireless%2C%20battery-free%2C%20and%20real-time%20monitoring%20of%20water%20permeation%20across%20thin-film%20encapsulation%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Massimo%22%2C%22lastName%22%3A%22Mariello%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22James%20Daniel%22%2C%22lastName%22%3A%22Rosenthal%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Francesco%22%2C%22lastName%22%3A%22Cecchetti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mingxiang%22%2C%22lastName%22%3A%22Gao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anja%20K.%22%2C%22lastName%22%3A%22Skrivervik%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yves%22%2C%22lastName%22%3A%22Leterrier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22St%5Cu00e9phanie%20P.%22%2C%22lastName%22%3A%22Lacour%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Long-term%20bioelectronic%20implants%20require%20stable%2C%20hermetic%20encapsulation.%20Water%20and%20ion%20ingress%20are%20challenging%20to%20quantify%2C%20especially%20in%20miniaturized%20microsystems%20and%20over%20time.%20We%20propose%20a%20wireless%20and%20battery-free%20flexible%20platform%20leveraging%20backscatter%20communication%20and%20magnesium%20%28Mg%29-based%20microsensors.%20Water%20permeation%20through%20the%20encapsulation%20induces%20corrosion%20of%20the%20Mg%20resistive%20sensor%20thereby%20shifting%20the%20oscillation%20frequency%20of%20the%20sensing%20circuit.%20Experimental%20in%20vitro%20and%20in-tissue%20characterization%20provides%20information%20on%20the%20operation%20of%20the%20platform%20and%20demonstrates%20the%20robustness%20and%20accuracy%20of%20this%20promising%20method%2C%20revealing%20its%20significance%20for%20in-situ%20real-time%20monitoring%20of%20implanted%20bioelectronics.%22%2C%22date%22%3A%222024-08-28%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41467-024-51247-3%22%2C%22ISSN%22%3A%222041-1723%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41467-024-51247-3%22%2C%22collections%22%3A%5B%22QWCYR4J9%22%2C%22HSR6CV29%22%5D%2C%22dateModified%22%3A%222024-09-11T15%3A16%3A10Z%22%7D%7D%2C%7B%22key%22%3A%22FHAJUK5B%22%2C%22library%22%3A%7B%22id%22%3A5649449%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Wu%20et%20al.%22%2C%22parsedDate%22%3A%222024%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EWu%2C%20K.%2C%20Mariello%2C%20M.%2C%20Leterrier%2C%20Y.%2C%20%26amp%3B%20Lacour%2C%20S.%20P.%20%282024%29.%20Optical%20Monitoring%20of%20Water%20Side%20Permeation%20in%20Thin%20Film%20Encapsulation.%20%3Ci%3EAdvanced%20Materials%3C%5C%2Fi%3E%2C%20%3Ci%3E36%3C%5C%2Fi%3E%2824%29%2C%202310201.%20%3Ca%20class%3D%27zp-DOIURL%27%20target%3D%27_blank%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadma.202310201%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadma.202310201%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Optical%20Monitoring%20of%20Water%20Side%20Permeation%20in%20Thin%20Film%20Encapsulation%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kangling%22%2C%22lastName%22%3A%22Wu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Massimo%22%2C%22lastName%22%3A%22Mariello%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yves%22%2C%22lastName%22%3A%22Leterrier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22St%5Cu00e9phanie%20P.%22%2C%22lastName%22%3A%22Lacour%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20stability%20of%20long%5Cu2010term%20microfabricated%20implants%20is%20hindered%20by%20the%20presence%20of%20multiple%20water%20diffusion%20paths%20within%20artificially%20patterned%20thin%5Cu2010film%20encapsulations.%20Side%20permeation%2C%20defined%20as%20infiltration%20of%20molecules%20through%20the%20lateral%20surface%20of%20the%20thin%20structure%2C%20becomes%20increasingly%20critical%20with%20the%20trend%20of%20developing%20high%5Cu2010density%20and%20miniaturized%20neural%20electrodes.%20However%2C%20current%20permeability%20measurement%20methods%20do%20not%20account%20for%20side%20permeation%20accurately%20nor%20quantitatively.%20Here%2C%20a%20novel%20optical%2C%20magnesium%20%28Mg%29%5Cu2010based%20method%20is%20proposed%20to%20quantify%20the%20side%20water%20transmission%20rate%20%28SWTR%29%20through%20thin%20film%20encapsulation%20and%20validate%20the%20approach%20using%20micrometric%20polyimide%20%28PI%29%20and%20polyimide%5Cu2010silicon%20carbide%20%28PI%5Cu2010SiC%29%20multilayers.%20Through%20computed%20digital%20grayscale%20images%20collected%20with%20corroding%20Mg%20film%20microcells%20coated%20with%20the%20thin%20encapsulation%2C%20side%20and%20surface%20WTRs%20are%20quantified.%20A%204.5%5Cu2010fold%20ratio%20between%20side%20and%20surface%20permeation%20is%20observed%2C%20highlighting%20the%20crucial%20role%20of%20the%20PI%5Cu2013PI%20interface%20in%20lateral%20diffusion.%20Universal%20guidelines%20for%20the%20design%20of%20flexible%2C%20hermetic%20neural%20interfaces%20are%20proposed.%20Increasing%20encapsulation%27s%20width%20%28interelectrode%20spacing%29%2C%20creating%20stronger%20interfacial%20interactions%2C%20and%20integrating%20high%5Cu2010barrier%20interlayers%20such%20as%20SiC%20significantly%20enhance%20the%20lateral%20hermeticity.%22%2C%22date%22%3A%2206%5C%2F2024%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fadma.202310201%22%2C%22ISSN%22%3A%220935-9648%2C%201521-4095%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fadma.202310201%22%2C%22collections%22%3A%5B%22QWCYR4J9%22%2C%22HSR6CV29%22%5D%2C%22dateModified%22%3A%222024-09-11T15%3A15%3A41Z%22%7D%7D%2C%7B%22key%22%3A%22J5DU4LM2%22%2C%22library%22%3A%7B%22id%22%3A5649449%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Fallegger%20et%20al.%22%2C%22parsedDate%22%3A%222023-09-01%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EFallegger%2C%20F.%2C%20Trouillet%2C%20A.%2C%20Coen%2C%20F.-V.%2C%20Schiavone%2C%20G.%2C%20%26amp%3B%20Lacour%2C%20S.%20P.%20%282023%29.%20A%20low-profile%20electromechanical%20packaging%20system%20for%20soft-to-flexible%20bioelectronic%20interfaces.%20%3Ci%3EAPL%20Bioengineering%3C%5C%2Fi%3E%2C%20%3Ci%3E7%3C%5C%2Fi%3E%283%29%2C%20036109.%20%3Ca%20class%3D%27zp-DOIURL%27%20target%3D%27_blank%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0152509%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0152509%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20low-profile%20electromechanical%20packaging%20system%20for%20soft-to-flexible%20bioelectronic%20interfaces%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Florian%22%2C%22lastName%22%3A%22Fallegger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alix%22%2C%22lastName%22%3A%22Trouillet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Florent-Val%5Cu00e9ry%22%2C%22lastName%22%3A%22Coen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Giuseppe%22%2C%22lastName%22%3A%22Schiavone%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22St%5Cu00e9phanie%20P.%22%2C%22lastName%22%3A%22Lacour%22%7D%5D%2C%22abstractNote%22%3A%22Interfacing%20the%20human%20body%20with%20the%20next%20generation%20of%20electronics%20requires%20technological%20advancement%20in%20designing%20and%20producing%20bioelectronic%20circuits.%20These%20circuits%20must%20integrate%20electrical%20functionality%20while%20simultaneously%20addressing%20limitations%20in%20mechanical%20compliance%20and%20dynamics%2C%20biocompatibility%2C%20and%20consistent%2C%20scalable%20manufacturing.%20The%20combination%20of%20mechanically%20disparate%20materials%20ranging%20from%20elastomers%20to%20inorganic%20crystalline%20semiconductors%20calls%20for%20modular%20designs%20with%20reliable%20and%20scalable%20electromechanical%20connectors.%20Here%2C%20we%20report%20on%20a%20novel%20interconnection%20solution%20for%20soft-to-flexible%20bioelectronic%20interfaces%20using%20a%20patterned%20and%20machined%20flexible%20printed%20circuit%20board%2C%20which%20we%20term%20FlexComb%2C%20interfaced%20with%20soft%20transducing%20systems.%20Using%20a%20simple%20assembly%20process%2C%20arrays%20of%20protruding%20%5Cu201cfingers%5Cu201d%20bearing%20individual%20electrical%20terminals%20are%20laser-machined%20on%20a%20standard%20flexible%20printed%20circuit%20board%20to%20create%20a%20comb-like%20structure%2C%20namely%2C%20the%20FlexComb.%20A%20matching%20pattern%20is%20also%20machined%20in%20the%20soft%20system%20to%20host%20and%20interlock%20electromechanically%20the%20FlexComb%20connections%20via%20a%20soft%20electrically%20conducting%20composite.%20We%20examine%20the%20electrical%20and%20electromechanical%20properties%20of%20the%20interconnection%20and%20demonstrate%20the%20versatility%20and%20scalability%20of%20the%20method%20through%20various%20customized%20submillimetric%20designs.%20In%20a%20pilot%20in%20vivo%20study%2C%20we%20validate%20the%20stability%20and%20compatibility%20of%20the%20FlexComb%20technology%20in%20a%20subdural%20electrocorticography%20system%20implanted%20for%206%5Cu2009months%20on%20the%20auditory%20cortex%20of%20a%20minipig.%20The%20FlexComb%20provides%20a%20reliable%20and%20simple%20technique%20to%20bond%20and%20connect%20soft%20transducing%20systems%20with%20flexible%20or%20rigid%20electronic%20boards%2C%20which%20should%20find%20many%20implementations%20in%20soft%20robotics%20and%20wearable%20and%20implantable%20bioelectronics.%22%2C%22date%22%3A%222023-09-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F5.0152509%22%2C%22ISSN%22%3A%222473-2877%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.aip.org%5C%2Fapb%5C%2Farticle%5C%2F7%5C%2F3%5C%2F036109%5C%2F2907369%5C%2FA-low-profile-electromechanical-packaging-system%22%2C%22collections%22%3A%5B%22QWCYR4J9%22%2C%22HSR6CV29%22%5D%2C%22dateModified%22%3A%222024-09-11T15%3A14%3A52Z%22%7D%7D%2C%7B%22key%22%3A%22J73ZDF8B%22%2C%22library%22%3A%7B%22id%22%3A5649449%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Song%20et%20al.%22%2C%22parsedDate%22%3A%222023-05-31%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ESong%2C%20S.%2C%20Fallegger%2C%20F.%2C%20Trouillet%2C%20A.%2C%20Kim%2C%20K.%2C%20%26amp%3B%20Lacour%2C%20S.%20P.%20%282023%29.%20Deployment%20of%20an%20electrocorticography%20system%20with%20a%20soft%20robotic%20actuator.%20%3Ci%3EScience%20Robotics%3C%5C%2Fi%3E%2C%20%3Ci%3E8%3C%5C%2Fi%3E%2878%29%2C%20eadd1002.%20%3Ca%20class%3D%27zp-DOIURL%27%20target%3D%27_blank%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1126%5C%2Fscirobotics.add1002%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1126%5C%2Fscirobotics.add1002%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Deployment%20of%20an%20electrocorticography%20system%20with%20a%20soft%20robotic%20actuator%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sukho%22%2C%22lastName%22%3A%22Song%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Florian%22%2C%22lastName%22%3A%22Fallegger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alix%22%2C%22lastName%22%3A%22Trouillet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kyungjin%22%2C%22lastName%22%3A%22Kim%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22St%5Cu00e9phanie%20P.%22%2C%22lastName%22%3A%22Lacour%22%7D%5D%2C%22abstractNote%22%3A%22Electrocorticography%20%28ECoG%29%20is%20a%20minimally%20invasive%20approach%20frequently%20used%20clinically%20to%20map%20epileptogenic%20regions%20of%20the%20brain%20and%20facilitate%20lesion%20resection%20surgery%20and%20increasingly%20explored%20in%20brain-machine%20interface%20applications.%20Current%20devices%20display%20limitations%20that%20require%20trade-offs%20among%20cortical%20surface%20coverage%2C%20spatial%20electrode%20resolution%2C%20aesthetic%2C%20and%20risk%20consequences%20and%20often%20limit%20the%20use%20of%20the%20mapping%20technology%20to%20the%20operating%20room.%20In%20this%20work%2C%20we%20report%20on%20a%20scalable%20technique%20for%20the%20fabrication%20of%20large-area%20soft%20robotic%20electrode%20arrays%20and%20their%20deployment%20on%20the%20cortex%20through%20a%20square-centimeter%20burr%20hole%20using%20a%20pressure-driven%20actuation%20mechanism%20called%20eversion.%20The%20deployable%20system%20consists%20of%20up%20to%20six%20prefolded%20soft%20legs%2C%20and%20it%20is%20placed%20subdurally%20on%20the%20cortex%20using%20an%20aqueous%20pressurized%20solution%20and%20secured%20to%20the%20pedestal%20on%20the%20rim%20of%20the%20small%20craniotomy.%20Each%20leg%20contains%20soft%2C%20microfabricated%20electrodes%20and%20strain%20sensors%20for%20real-time%20deployment%20monitoring.%20In%20a%20proof-of-concept%20acute%20surgery%2C%20a%20soft%20robotic%20electrode%20array%20was%20successfully%20deployed%20on%20the%20cortex%20of%20a%20minipig%20to%20record%20sensory%20cortical%20activity.%20This%20soft%20robotic%20neurotechnology%20opens%20promising%20avenues%20for%20minimally%20invasive%20cortical%20surgery%20and%20applications%20related%20to%20neurological%20disorders%20such%20as%20motor%20and%20sensory%20deficits.%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Soft%20robotic%20actuation%20with%20bioelectronics%20were%20combined%20to%20develop%20minimally%20invasive%2C%20deployable%20cortical%20electrode%20arrays.%22%2C%22date%22%3A%222023-05-31%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1126%5C%2Fscirobotics.add1002%22%2C%22ISSN%22%3A%222470-9476%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.science.org%5C%2Fdoi%5C%2F10.1126%5C%2Fscirobotics.add1002%22%2C%22collections%22%3A%5B%22QWCYR4J9%22%2C%22HSR6CV29%22%5D%2C%22dateModified%22%3A%222024-09-11T15%3A14%3A28Z%22%7D%7D%2C%7B%22key%22%3A%22QDLI4S5N%22%2C%22library%22%3A%7B%22id%22%3A5649449%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Fallegger%20et%20al.%22%2C%22parsedDate%22%3A%222023-03-31%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EFallegger%2C%20F.%2C%20Trouillet%2C%20A.%2C%20%26amp%3B%20Lacour%2C%20S.%20P.%20%282023%29.%20Subdural%20Soft%20Electrocorticography%20%28ECoG%29%20Array%20Implantation%20and%20Long-Term%20Cortical%20Recording%20in%20Minipigs.%20%3Ci%3EJournal%20of%20Visualized%20Experiments%3C%5C%2Fi%3E%2C%20%3Ci%3E193%3C%5C%2Fi%3E%2C%2064997.%20%3Ca%20class%3D%27zp-DOIURL%27%20target%3D%27_blank%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3791%5C%2F64997%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3791%5C%2F64997%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Subdural%20Soft%20Electrocorticography%20%28ECoG%29%20Array%20Implantation%20and%20Long-Term%20Cortical%20Recording%20in%20Minipigs%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Florian%22%2C%22lastName%22%3A%22Fallegger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alix%22%2C%22lastName%22%3A%22Trouillet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22St%5Cu00e9phanie%20P.%22%2C%22lastName%22%3A%22Lacour%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222023-3-31%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.3791%5C%2F64997%22%2C%22ISSN%22%3A%221940-087X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fapp.jove.com%5C%2Ft%5C%2F64997%22%2C%22collections%22%3A%5B%22QWCYR4J9%22%2C%22HSR6CV29%22%5D%2C%22dateModified%22%3A%222024-09-11T15%3A13%3A59Z%22%7D%7D%2C%7B%22key%22%3A%229LF3MZMU%22%2C%22library%22%3A%7B%22id%22%3A5649449%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Borda%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EBorda%2C%20E.%2C%20Medagoda%2C%20D.%20I.%2C%20Airaghi%20Leccardi%2C%20M.%20J.%20I.%2C%20Zollinger%2C%20E.%20G.%2C%20%26amp%3B%20Ghezzi%2C%20D.%20%282023%29.%20Conformable%20neural%20interface%20based%20on%20off-stoichiometry%20thiol-ene-epoxy%20thermosets.%20%3Ci%3EBiomaterials%3C%5C%2Fi%3E%2C%20%3Ci%3E293%3C%5C%2Fi%3E%2C%20121979.%20%3Ca%20class%3D%27zp-DOIURL%27%20target%3D%27_blank%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.biomaterials.2022.121979%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.biomaterials.2022.121979%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Conformable%20neural%20interface%20based%20on%20off-stoichiometry%20thiol-ene-epoxy%20thermosets%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eleonora%22%2C%22lastName%22%3A%22Borda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Danashi%20Imani%22%2C%22lastName%22%3A%22Medagoda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marta%20Jole%20Ildelfonsa%22%2C%22lastName%22%3A%22Airaghi%20Leccardi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Elodie%20Genevi%5Cu00e8ve%22%2C%22lastName%22%3A%22Zollinger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Diego%22%2C%22lastName%22%3A%22Ghezzi%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2202%5C%2F2023%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.biomaterials.2022.121979%22%2C%22ISSN%22%3A%2201429612%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS0142961222006196%22%2C%22collections%22%3A%5B%22QWCYR4J9%22%2C%22HSR6CV29%22%5D%2C%22dateModified%22%3A%222024-09-11T15%3A13%3A30Z%22%7D%7D%2C%7B%22key%22%3A%22V8257WXD%22%2C%22library%22%3A%7B%22id%22%3A5649449%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Nayir%20et%20al.%22%2C%22parsedDate%22%3A%222022%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ENayir%2C%20S.%2C%20Lacour%2C%20S.%20P.%2C%20%26amp%3B%20Kucera%2C%20J.%20P.%20%282022%29.%20Active%20force%20generation%20contributes%20to%20the%20complexity%20of%20spontaneous%20activity%20and%20to%20the%20response%20to%20stretch%20of%20murine%20cardiomyocyte%20cultures.%20%3Ci%3EThe%20Journal%20of%20Physiology%3C%5C%2Fi%3E%2C%20%3Ci%3E600%3C%5C%2Fi%3E%2814%29%2C%203287%26%23x2013%3B3312.%20%3Ca%20class%3D%27zp-DOIURL%27%20target%3D%27_blank%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1113%5C%2FJP283083%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1113%5C%2FJP283083%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Active%20force%20generation%20contributes%20to%20the%20complexity%20of%20spontaneous%20activity%20and%20to%20the%20response%20to%20stretch%20of%20murine%20cardiomyocyte%20cultures%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Seyma%22%2C%22lastName%22%3A%22Nayir%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22St%5Cu00e9phanie%20P.%22%2C%22lastName%22%3A%22Lacour%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jan%20P.%22%2C%22lastName%22%3A%22Kucera%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Cardiomyocyte%20cultures%20exhibit%20spontaneous%20electrical%20and%20contractile%20activity%2C%20as%20in%20a%20natural%20cardiac%20pacemaker.%20In%20such%20preparations%2C%20beat%20rate%20variability%20exhibits%20features%20similar%20to%20those%20of%20heart%20rate%20variability%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20in%20vivo%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20.%20Mechanical%20deformations%20and%20forces%20feed%20back%20on%20the%20electrical%20properties%20of%20cardiomyocytes%2C%20but%20it%20is%20not%20fully%20elucidated%20how%20this%20mechano%5Cu2010electrical%20interplay%20affects%20beating%20variability%20in%20such%20preparations.%20Using%20stretchable%20microelectrode%20arrays%2C%20we%20assessed%20the%20effects%20of%20the%20myosin%20inhibitor%20blebbistatin%20and%20the%20non%5Cu2010selective%20stretch%5Cu2010activated%20channel%20blocker%20streptomycin%20on%20beating%20variability%20and%20on%20the%20response%20of%20neonatal%20or%20fetal%20murine%20ventricular%20cell%20cultures%20against%20deformation.%20Spontaneous%20electrical%20activity%20was%20recorded%20without%20stretch%20and%20upon%20predefined%20deformation%20protocols%20%285%25%20uniaxial%20and%202%25%20equibiaxial%20strain%2C%20applied%20repeatedly%20for%201%5Cu00a0min%20every%203%5Cu00a0min%29.%20Without%20stretch%2C%20spontaneous%20activity%20originated%20from%20the%20edge%20of%20the%20preparations%2C%20and%20its%20site%20of%20origin%20switched%20frequently%20in%20a%20complex%20manner%20across%20the%20cultures.%20Blebbistatin%20did%20not%20change%20mean%20beat%20rate%2C%20but%20it%20decreased%20the%20spatial%20complexity%20of%20spontaneous%20activity.%20In%20contrast%2C%20streptomycin%20did%20not%20exert%20any%20manifest%20effects.%20During%20the%20deformation%20protocols%2C%20beat%20rate%20increased%20transiently%20upon%20stretch%20but%2C%20paradoxically%2C%20also%20upon%20release.%20Blebbistatin%20attenuated%20the%20response%20to%20stretch%2C%20whereas%20this%20response%20was%20not%20affected%20by%20streptomycin.%20Therefore%2C%20our%20data%20support%20the%20notion%20that%20in%20a%20spontaneously%20firing%20network%20of%20cardiomyocytes%2C%20active%20force%20generation%2C%20rather%20than%20stretch%5Cu2010activated%20channels%2C%20is%20involved%20mechanistically%20in%20the%20complexity%20of%20the%20spatiotemporal%20patterns%20of%20spontaneous%20activity%20and%20in%20the%20stretch%5Cu2010induced%20acceleration%20of%20beating.%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20image%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Key%20points%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Monolayer%20cultures%20of%20cardiac%20cells%20exhibit%20spontaneous%20electrical%20and%20contractile%20activity%2C%20as%20in%20a%20natural%20cardiac%20pacemaker.%20Beating%20variability%20in%20these%20preparations%20recapitulates%20the%20power%5Cu2010law%20behaviour%20of%20heart%20rate%20variability%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20in%20vivo%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20.%20However%2C%20the%20effects%20of%20mechano%5Cu2010electrical%20feedback%20on%20beating%20variability%20are%20not%20yet%20fully%20understood.%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Using%20stretchable%20microelectrode%20arrays%2C%20we%20examined%20the%20effects%20of%20the%20contraction%20uncoupler%20blebbistatin%20and%20the%20non%5Cu2010specific%20stretch%5Cu2010activated%20channel%20blocker%20streptomycin%20on%20beating%20variability%20and%20on%20stretch%5Cu2010induced%20changes%20of%20beat%20rate.%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Without%20stretch%2C%20blebbistatin%20decreased%20the%20spatial%20complexity%20of%20beating%20variability%2C%20whereas%20streptomycin%20had%20no%20effects.%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Both%20stretch%20and%20release%20increased%20beat%20rate%20transiently%3B%20blebbistatin%20attenuated%20the%20increase%20of%20beat%20rate%20upon%20stretch%2C%20whereas%20streptomycin%20had%20no%20effects.%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Active%20force%20generation%20contributes%20to%20the%20complexity%20of%20spatiotemporal%20patterns%20of%20beating%20variability%20and%20to%20the%20increase%20of%20beat%20rate%20upon%20mechanical%20deformation.%20Our%20study%20contributes%20to%20the%20understanding%20of%20how%20mechano%5Cu2010electrical%20feedback%20influences%20heart%20rate%20variability.%22%2C%22date%22%3A%2207%5C%2F2022%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1113%5C%2FJP283083%22%2C%22ISSN%22%3A%220022-3751%2C%201469-7793%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fphysoc.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1113%5C%2FJP283083%22%2C%22collections%22%3A%5B%22QWCYR4J9%22%2C%22HSR6CV29%22%5D%2C%22dateModified%22%3A%222024-09-11T15%3A13%3A03Z%22%7D%7D%2C%7B%22key%22%3A%226BACKNXJ%22%2C%22library%22%3A%7B%22id%22%3A5649449%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Kim%20et%20al.%22%2C%22parsedDate%22%3A%222021%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EKim%2C%20K.%2C%20Van%20Gompel%2C%20M.%2C%20Wu%2C%20K.%2C%20Schiavone%2C%20G.%2C%20Carron%2C%20J.%2C%20Bourgeois%2C%20F.%2C%20Lacour%2C%20S.%20P.%2C%20%26amp%3B%20Leterrier%2C%20Y.%20%282021%29.%20Extended%20Barrier%20Lifetime%20of%20Partially%20Cracked%20Organic%5C%2FInorganic%20Multilayers%20for%20Compliant%20Implantable%20Electronics.%20%3Ci%3ESmall%3C%5C%2Fi%3E%2C%20%3Ci%3E17%3C%5C%2Fi%3E%2840%29%2C%202103039.%20%3Ca%20class%3D%27zp-DOIURL%27%20target%3D%27_blank%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fsmll.202103039%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fsmll.202103039%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Extended%20Barrier%20Lifetime%20of%20Partially%20Cracked%20Organic%5C%2FInorganic%20Multilayers%20for%20Compliant%20Implantable%20Electronics%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kyungjin%22%2C%22lastName%22%3A%22Kim%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthias%22%2C%22lastName%22%3A%22Van%20Gompel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kangling%22%2C%22lastName%22%3A%22Wu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Giuseppe%22%2C%22lastName%22%3A%22Schiavone%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julien%22%2C%22lastName%22%3A%22Carron%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Florian%22%2C%22lastName%22%3A%22Bourgeois%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22St%5Cu00e9phanie%20P.%22%2C%22lastName%22%3A%22Lacour%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yves%22%2C%22lastName%22%3A%22Leterrier%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Flexible%20and%20soft%20bioelectronics%20display%20conflicting%20demands%20on%20miniaturization%2C%20compliance%2C%20and%20reliability.%20Here%2C%20the%20authors%20investigate%20the%20design%20and%20performance%20of%20thin%20encapsulation%20multilayers%20against%20hermeticity%20and%20mechanical%20integrity.%20Partially%20cracked%20organic%5C%2Finorganic%20multilayer%20coatings%20are%20demonstrated%20to%20display%20surprisingly%20year%5Cu2010long%20hermetic%20lifetime%20under%20demanding%20mechanical%20and%20environmental%20loading.%20The%20thin%20hermetic%20encapsulation%20is%20grown%20in%20a%20single%20process%20chamber%20as%20a%20continuous%20multilayer%20with%20dyads%20of%20atomic%20layer%20deposited%20%28ALD%29%20Al%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20O%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2010TiO%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20and%20chemical%20vapor%20deposited%20Parylene%20C%20films%20with%20strong%20interlayer%20adhesion.%20Upon%20tensile%20loading%2C%20tortuous%20diffusion%20pathways%20defined%20along%20channel%20cracks%20in%20the%20ALD%20oxide%20films%20and%20through%20tough%20Parylene%20films%20efficiently%20postpone%20the%20hermeticity%20failure%20of%20the%20partially%20cracked%20coating.%20The%20authors%20assessed%20the%20coating%20performance%20against%20prolonged%20exposure%20to%20biomimetic%20physiological%20conditions%20using%20coated%20magnesium%20films%2C%20platinum%20interdigitated%20electrodes%2C%20and%20optoelectronic%20devices%20prepared%20on%20stretchable%20substrates.%20Designed%20extension%20of%20the%20lifetime%20preventing%20direct%20failures%20reduces%20from%20over%205%20years%20yet%20tolerates%20the%20lifetime%20of%203%20years%20even%20with%20the%20presence%20of%20critical%20damage%2C%20while%20others%20will%20directly%20fail%20less%20than%20two%20months%20at%2037%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu00b0%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20C.%20This%20strategy%20should%20accelerate%20progress%20on%20thin%20hermetic%20packaging%20for%20miniaturized%20and%20compliant%20implantable%20electronics.%22%2C%22date%22%3A%2210%5C%2F2021%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fsmll.202103039%22%2C%22ISSN%22%3A%221613-6810%2C%201613-6829%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fsmll.202103039%22%2C%22collections%22%3A%5B%22QWCYR4J9%22%2C%22HSR6CV29%22%5D%2C%22dateModified%22%3A%222024-09-11T15%3A12%3A33Z%22%7D%7D%2C%7B%22key%22%3A%22H8GZK4DU%22%2C%22library%22%3A%7B%22id%22%3A5649449%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Schiavone%20et%20al.%22%2C%22parsedDate%22%3A%222021-08-01%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ESchiavone%2C%20G.%2C%20Vachicouras%2C%20N.%2C%20Vyza%2C%20Y.%2C%20%26amp%3B%20Lacour%2C%20S.%20P.%20%282021%29.%20Dimensional%20scaling%20of%20thin-film%20stimulation%20electrode%20systems%20in%20translational%20research.%20%3Ci%3EJournal%20of%20Neural%20Engineering%3C%5C%2Fi%3E%2C%20%3Ci%3E18%3C%5C%2Fi%3E%284%29%2C%20046054.%20%3Ca%20class%3D%27zp-DOIURL%27%20target%3D%27_blank%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1741-2552%5C%2Fabf607%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1741-2552%5C%2Fabf607%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Dimensional%20scaling%20of%20thin-film%20stimulation%20electrode%20systems%20in%20translational%20research%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Giuseppe%22%2C%22lastName%22%3A%22Schiavone%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicolas%22%2C%22lastName%22%3A%22Vachicouras%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yashwanth%22%2C%22lastName%22%3A%22Vyza%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22St%5Cu00e9phanie%20P%22%2C%22lastName%22%3A%22Lacour%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Objective.%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Electrical%20stimulation%20of%20biological%20tissue%20is%20an%20established%20technique%20in%20research%20and%20clinical%20practice%20that%20uses%20implanted%20electrodes%20to%20deliver%20electrical%20pulses%20for%20a%20variety%20of%20therapies.%20Significant%20research%20currently%20explores%20new%20electrode%20system%20technologies%20and%20stimulation%20protocols%20in%20preclinical%20models%2C%20aiming%20at%20both%20improving%20the%20electrode%20performance%20and%20confirming%20therapeutic%20efficacy.%20Assessing%20the%20scalability%20of%20newly%20proposed%20electrode%20technology%20and%20their%20use%20for%20tissue%20stimulation%20remains%2C%20however%2C%20an%20open%20question.%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Approach.%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20We%20propose%20a%20simplified%20electrical%20model%20that%20formalizes%20the%20dimensional%20scaling%20of%20stimulation%20electrode%20systems.%20We%20use%20established%20equations%20describing%20the%20electrode%20impedance%2C%20and%20apply%20them%20to%20the%20case%20of%20stimulation%20electrodes%20driven%20by%20a%20voltage-capped%20pulse%20generator.%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Main%20results.%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20We%20find%20a%20hard%2C%20intrinsic%20upward%20scalability%20limit%20to%20the%20electrode%20radius%20that%20largely%20depends%20on%20the%20conductor%20technology.%20We%20finally%20provide%20a%20simple%20analytical%20formula%20predicting%20the%20maximum%20size%20of%20a%20stimulation%20electrode%20as%20a%20function%20of%20the%20stimulation%20parameters%20and%20conductor%20resistance.%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Significance.%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Our%20results%20highlight%20the%20importance%20of%20careful%20geometrical%20and%20electrical%20designs%20of%20electrode%20systems%20based%20on%20novel%20thin-film%20technologies%20and%20that%20become%20particularly%20relevant%20for%20their%20translational%20implementation%20with%20electrode%20geometries%20approaching%20clinical%20human%20size%20electrodes%20and%20interfacing%20with%20voltage-capped%20neurostimulation%20systems.%22%2C%22date%22%3A%222021-08-01%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1088%5C%2F1741-2552%5C%2Fabf607%22%2C%22ISSN%22%3A%221741-2560%2C%201741-2552%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1741-2552%5C%2Fabf607%22%2C%22collections%22%3A%5B%22QWCYR4J9%22%2C%22HSR6CV29%22%5D%2C%22dateModified%22%3A%222024-09-11T15%3A12%3A04Z%22%7D%7D%2C%7B%22key%22%3A%2256UJKT7J%22%2C%22library%22%3A%7B%22id%22%3A5649449%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Vachicouras%20et%20al.%22%2C%22parsedDate%22%3A%222019-10-16%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EVachicouras%2C%20N.%2C%20Tarabichi%2C%20O.%2C%20Kanumuri%2C%20V.%20V.%2C%20Tringides%2C%20C.%20M.%2C%20Macron%2C%20J.%2C%20Fallegger%2C%20F.%2C%20Thenaisie%2C%20Y.%2C%20Epprecht%2C%20L.%2C%20McInturff%2C%20S.%2C%20Qureshi%2C%20A.%20A.%2C%20Paggi%2C%20V.%2C%20Kuklinski%2C%20M.%20W.%2C%20Brown%2C%20M.%20C.%2C%20Lee%2C%20D.%20J.%2C%20%26amp%3B%20Lacour%2C%20S.%20P.%20%282019%29.%20Microstructured%20thin-film%20electrode%20technology%20enables%20proof%20of%20concept%20of%20scalable%2C%20soft%20auditory%20brainstem%20implants.%20%3Ci%3EScience%20Translational%20Medicine%3C%5C%2Fi%3E%2C%20%3Ci%3E11%3C%5C%2Fi%3E%28514%29%2C%20eaax9487.%20%3Ca%20class%3D%27zp-DOIURL%27%20target%3D%27_blank%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1126%5C%2Fscitranslmed.aax9487%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1126%5C%2Fscitranslmed.aax9487%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Microstructured%20thin-film%20electrode%20technology%20enables%20proof%20of%20concept%20of%20scalable%2C%20soft%20auditory%20brainstem%20implants%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicolas%22%2C%22lastName%22%3A%22Vachicouras%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Osama%22%2C%22lastName%22%3A%22Tarabichi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vivek%20V.%22%2C%22lastName%22%3A%22Kanumuri%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christina%20M.%22%2C%22lastName%22%3A%22Tringides%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jennifer%22%2C%22lastName%22%3A%22Macron%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Florian%22%2C%22lastName%22%3A%22Fallegger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yohann%22%2C%22lastName%22%3A%22Thenaisie%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lorenz%22%2C%22lastName%22%3A%22Epprecht%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stephen%22%2C%22lastName%22%3A%22McInturff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ahad%20A.%22%2C%22lastName%22%3A%22Qureshi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Valentina%22%2C%22lastName%22%3A%22Paggi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Martin%20W.%22%2C%22lastName%22%3A%22Kuklinski%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20Christian%22%2C%22lastName%22%3A%22Brown%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%20J.%22%2C%22lastName%22%3A%22Lee%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22St%5Cu00e9phanie%20P.%22%2C%22lastName%22%3A%22Lacour%22%7D%5D%2C%22abstractNote%22%3A%22Engineered%20conformability%20in%20auditory%20brainstem%20implant%20electrode%20arrays%20improves%20the%20electrode-brainstem%20interface%20in%20mice%20and%20in%20human%20cadavers.%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Beneficial%20bending%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Some%20people%20with%20deafness%20receive%20auditory%20brainstem%20implants%20%28ABIs%29%2C%20neurotechnology%20that%20directly%20stimulates%20the%20cochlear%20nucleus%20%28CN%29.%20Unfortunately%2C%20auditory%20outcomes%20after%20implantation%20are%20limited%2C%20possibly%20due%20to%20mismatch%20between%20the%20stiffness%20of%20the%20implant%20and%20the%20CN.%20Vachicouras%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20et%20al%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20.%20developed%20ABIs%20that%20conform%20to%20the%20curvature%20of%20the%20CN.%20The%20soft%20arrays%20could%20be%20easily%20handled%20during%20surgery%20and%20functioned%20over%201%20month%20when%20implanted%20in%20mice.%20A%20scaled-up%20version%20of%20the%20conformable%20ABIs%20inserted%20in%20human%20cadavers%20showed%20good%20electromechanical%20and%20electrochemical%20stability%20and%20a%20potentially%20larger%20dynamic%20range%20compared%20to%20the%20clinical%20ABIs.%20These%20proof-of-concept%20results%20support%20further%20testing%20in%20models%20of%20deafness.%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Auditory%20brainstem%20implants%20%28ABIs%29%20provide%20sound%20awareness%20to%20deaf%20individuals%20who%20are%20not%20candidates%20for%20the%20cochlear%20implant.%20The%20ABI%20electrode%20array%20rests%20on%20the%20surface%20of%20the%20cochlear%20nucleus%20%28CN%29%20in%20the%20brainstem%20and%20delivers%20multichannel%20electrical%20stimulation.%20The%20complex%20anatomy%20and%20physiology%20of%20the%20CN%2C%20together%20with%20poor%20spatial%20selectivity%20of%20electrical%20stimulation%20and%20inherent%20stiffness%20of%20contemporary%20multichannel%20arrays%2C%20leads%20to%20only%20modest%20auditory%20outcomes%20among%20ABI%20users.%20Here%2C%20we%20hypothesized%20that%20a%20soft%20ABI%20could%20enhance%20biomechanical%20compatibility%20with%20the%20curved%20CN%20surface.%20We%20developed%20implantable%20ABIs%20that%20are%20compatible%20with%20surgical%20handling%2C%20conform%20to%20the%20curvature%20of%20the%20CN%20after%20placement%2C%20and%20deliver%20efficient%20electrical%20stimulation.%20The%20soft%20ABI%20array%20design%20relies%20on%20precise%20microstructuring%20of%20plastic-metal-plastic%20multilayers%20to%20enable%20mechanical%20compliance%2C%20patterning%2C%20and%20electrical%20function.%20We%20fabricated%20soft%20ABIs%20to%20the%20scale%20of%20mouse%20and%20human%20CN%20and%20validated%20them%20in%20vitro.%20Experiments%20in%20mice%20demonstrated%20that%20these%20implants%20reliably%20evoked%20auditory%20neural%20activity%20over%201%20month%20in%20vivo.%20Evaluation%20in%20human%20cadaveric%20models%20confirmed%20compatibility%20after%20insertion%20using%20an%20endoscopic-assisted%20craniotomy%20surgery%2C%20ease%20of%20array%20positioning%2C%20and%20robustness%20and%20reliability%20of%20the%20soft%20electrodes.%20This%20neurotechnology%20offers%20an%20opportunity%20to%20treat%20deafness%20in%20patients%20who%20are%20not%20candidates%20for%20the%20cochlear%20implant%2C%20and%20the%20design%20and%20manufacturing%20principles%20are%20broadly%20applicable%20to%20implantable%20soft%20bioelectronics%20throughout%20the%20central%20and%20peripheral%20nervous%20system.%22%2C%22date%22%3A%222019-10-16%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1126%5C%2Fscitranslmed.aax9487%22%2C%22ISSN%22%3A%221946-6234%2C%201946-6242%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.science.org%5C%2Fdoi%5C%2F10.1126%5C%2Fscitranslmed.aax9487%22%2C%22collections%22%3A%5B%22QWCYR4J9%22%2C%22VH52CPEQ%22%2C%22HSR6CV29%22%5D%2C%22dateModified%22%3A%222024-09-09T08%3A31%3A10Z%22%7D%7D%2C%7B%22key%22%3A%22BIUIPX3U%22%2C%22library%22%3A%7B%22id%22%3A5649449%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Shur%20et%20al.%22%2C%22parsedDate%22%3A%222020-07-20%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EShur%2C%20M.%2C%20Fallegger%2C%20F.%2C%20Pirondini%2C%20E.%2C%20Roux%2C%20A.%2C%20Bichat%2C%20A.%2C%20Barraud%2C%20Q.%2C%20Courtine%2C%20G.%2C%20%26amp%3B%20Lacour%2C%20S.%20P.%20%282020%29.%20Soft%20Printable%20Electrode%20Coating%20for%20Neural%20Interfaces.%20%3Ci%3EACS%20Applied%20Bio%20Materials%3C%5C%2Fi%3E%2C%20%3Ci%3E3%3C%5C%2Fi%3E%287%29%2C%204388%26%23x2013%3B4397.%20%3Ca%20class%3D%27zp-DOIURL%27%20target%3D%27_blank%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsabm.0c00401%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsabm.0c00401%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Soft%20Printable%20Electrode%20Coating%20for%20Neural%20Interfaces%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%22%2C%22lastName%22%3A%22Shur%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Florian%22%2C%22lastName%22%3A%22Fallegger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Elvira%22%2C%22lastName%22%3A%22Pirondini%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Adrien%22%2C%22lastName%22%3A%22Roux%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Arnaud%22%2C%22lastName%22%3A%22Bichat%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Quentin%22%2C%22lastName%22%3A%22Barraud%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gr%5Cu00e9goire%22%2C%22lastName%22%3A%22Courtine%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22St%5Cu00e9phanie%20P.%22%2C%22lastName%22%3A%22Lacour%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222020-07-20%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facsabm.0c00401%22%2C%22ISSN%22%3A%222576-6422%2C%202576-6422%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.acs.org%5C%2Fdoi%5C%2F10.1021%5C%2Facsabm.0c00401%22%2C%22collections%22%3A%5B%22QWCYR4J9%22%2C%22VH52CPEQ%22%2C%22HSR6CV29%22%5D%2C%22dateModified%22%3A%222024-09-09T08%3A30%3A54Z%22%7D%7D%2C%7B%22key%22%3A%22K4HAM7IT%22%2C%22library%22%3A%7B%22id%22%3A5649449%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Paggi%20et%20al.%22%2C%22parsedDate%22%3A%222024-02-14%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EPaggi%2C%20V.%2C%20Fallegger%2C%20F.%2C%20Serex%2C%20L.%2C%20Rizzo%2C%20O.%2C%20Galan%2C%20K.%2C%20Giannotti%2C%20A.%2C%20Furfaro%2C%20I.%2C%20Zinno%2C%20C.%2C%20Bernini%2C%20F.%2C%20Micera%2C%20S.%2C%20%26amp%3B%20Lacour%2C%20S.%20P.%20%282024%29.%20A%20soft%2C%20scalable%20and%20adaptable%20multi-contact%20cuff%20electrode%20for%20targeted%20peripheral%20nerve%20modulation.%20%3Ci%3EBioelectronic%20Medicine%3C%5C%2Fi%3E%2C%20%3Ci%3E10%3C%5C%2Fi%3E%281%29%2C%206.%20%3Ca%20class%3D%27zp-DOIURL%27%20target%3D%27_blank%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1186%5C%2Fs42234-023-00137-y%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1186%5C%2Fs42234-023-00137-y%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20soft%2C%20scalable%20and%20adaptable%20multi-contact%20cuff%20electrode%20for%20targeted%20peripheral%20nerve%20modulation%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Valentina%22%2C%22lastName%22%3A%22Paggi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Florian%22%2C%22lastName%22%3A%22Fallegger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ludovic%22%2C%22lastName%22%3A%22Serex%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Olivier%22%2C%22lastName%22%3A%22Rizzo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Katia%22%2C%22lastName%22%3A%22Galan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alice%22%2C%22lastName%22%3A%22Giannotti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ivan%22%2C%22lastName%22%3A%22Furfaro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ciro%22%2C%22lastName%22%3A%22Zinno%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fabio%22%2C%22lastName%22%3A%22Bernini%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Silvestro%22%2C%22lastName%22%3A%22Micera%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22St%5Cu00e9phanie%20P.%22%2C%22lastName%22%3A%22Lacour%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Background%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Cuff%20electrodes%20target%20various%20nerves%20throughout%20the%20body%2C%20providing%20neuromodulation%20therapies%20for%20motor%2C%20sensory%2C%20or%20autonomic%20disorders.%20However%2C%20when%20using%20standard%2C%20thick%20silicone%20cuffs%2C%20fabricated%20in%20discrete%20circular%20sizes%2C%20complications%20may%20arise%2C%20namely%20cuff%20displacement%20or%20nerve%20compression%2C%20due%20to%20a%20poor%20adaptability%20to%20variable%20nerve%20shapes%20and%20sizes%20encountered%20in%20vivo.%20Improvements%20in%20cuff%20design%2C%20materials%2C%20closing%20mechanism%20and%20surgical%20approach%20are%20necessary%20to%20overcome%20these%20issues.%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Methods%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20In%20this%20work%2C%20we%20propose%20a%20microfabricated%20multi-channel%20silicone-based%20soft%20cuff%20electrode%20with%20a%20novel%20easy-to-implant%20and%20size-adaptable%20design%20and%20evaluate%20a%20number%20of%20essential%20features%20such%20as%20nerve-cuff%20contact%2C%20nerve%20compression%2C%20cuff%20locking%20stability%2C%20long-term%20integration%20and%20stimulation%20selectivity.%20We%20also%20compared%20performance%20to%20that%20of%20standard%20fixed-size%20cuffs.%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Results%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20belt-like%20cuff%20made%20of%20150%5Cu2009%5Cu03bcm%20thick%20silicone%20membranes%20provides%20a%20stable%20and%20pressure-free%20conformal%20contact%2C%20independently%20of%20nerve%20size%20variability%2C%20combined%20with%20a%20straightforward%20implantation%20procedure.%20The%20adaptable%20design%20and%20use%20of%20soft%20materials%20lead%20to%20limited%20scarring%20and%20demyelination%20after%206-week%20implantation.%20In%20addition%2C%20multi-contact%20designs%2C%20ranging%20from%206%20to%2016%20electrodes%2C%20allow%20for%20selective%20stimulation%20in%20models%20of%20rat%20and%20pig%20sciatic%20nerve%2C%20achieving%20targeted%20activation%20of%20up%20to%205%20hindlimb%20muscles.%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Conclusion%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20These%20results%20suggest%20a%20promising%20alternative%20to%20classic%20fixed-diameter%20cuffs%20and%20may%20facilitate%20the%20adoption%20of%20soft%2C%20adaptable%20cuffs%20in%20clinical%20settings.%22%2C%22date%22%3A%222024-02-14%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1186%5C%2Fs42234-023-00137-y%22%2C%22ISSN%22%3A%222332-8886%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fbioelecmed.biomedcentral.com%5C%2Farticles%5C%2F10.1186%5C%2Fs42234-023-00137-y%22%2C%22collections%22%3A%5B%22QWCYR4J9%22%2C%22VH52CPEQ%22%2C%22HSR6CV29%22%5D%2C%22dateModified%22%3A%222024-09-09T08%3A29%3A35Z%22%7D%7D%2C%7B%22key%22%3A%222JN2JGHV%22%2C%22library%22%3A%7B%22id%22%3A5649449%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Fallegger%20et%20al.%22%2C%22parsedDate%22%3A%222021%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EFallegger%2C%20F.%2C%20Schiavone%2C%20G.%2C%20Pirondini%2C%20E.%2C%20Wagner%2C%20F.%20B.%2C%20Vachicouras%2C%20N.%2C%20Serex%2C%20L.%2C%20Zegarek%2C%20G.%2C%20May%2C%20A.%2C%20Constanthin%2C%20P.%2C%20Palma%2C%20M.%2C%20Khoshnevis%2C%20M.%2C%20Van%20Roost%2C%20D.%2C%20Yvert%2C%20B.%2C%20Courtine%2C%20G.%2C%20Schaller%2C%20K.%2C%20Bloch%2C%20J.%2C%20%26amp%3B%20Lacour%2C%20S.%20P.%20%282021%29.%20MRI%26%23x2010%3BCompatible%20and%20Conformal%20Electrocorticography%20Grids%20for%20Translational%20Research.%20%3Ci%3EAdvanced%20Science%3C%5C%2Fi%3E%2C%20%3Ci%3E8%3C%5C%2Fi%3E%289%29%2C%202003761.%20%3Ca%20class%3D%27zp-DOIURL%27%20target%3D%27_blank%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadvs.202003761%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadvs.202003761%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22MRI%5Cu2010Compatible%20and%20Conformal%20Electrocorticography%20Grids%20for%20Translational%20Research%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Florian%22%2C%22lastName%22%3A%22Fallegger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Giuseppe%22%2C%22lastName%22%3A%22Schiavone%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Elvira%22%2C%22lastName%22%3A%22Pirondini%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fabien%20B.%22%2C%22lastName%22%3A%22Wagner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicolas%22%2C%22lastName%22%3A%22Vachicouras%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ludovic%22%2C%22lastName%22%3A%22Serex%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gregory%22%2C%22lastName%22%3A%22Zegarek%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Adrien%22%2C%22lastName%22%3A%22May%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paul%22%2C%22lastName%22%3A%22Constanthin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marie%22%2C%22lastName%22%3A%22Palma%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mehrdad%22%2C%22lastName%22%3A%22Khoshnevis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dirk%22%2C%22lastName%22%3A%22Van%20Roost%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Blaise%22%2C%22lastName%22%3A%22Yvert%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gr%5Cu00e9goire%22%2C%22lastName%22%3A%22Courtine%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Karl%22%2C%22lastName%22%3A%22Schaller%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jocelyne%22%2C%22lastName%22%3A%22Bloch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22St%5Cu00e9phanie%20P.%22%2C%22lastName%22%3A%22Lacour%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Intraoperative%20electrocorticography%20%28ECoG%29%20captures%20neural%20information%20from%20the%20surface%20of%20the%20cerebral%20cortex%20during%20surgeries%20such%20as%20resections%20for%20intractable%20epilepsy%20and%20tumors.%20Current%20clinical%20ECoG%20grids%20come%20in%20evenly%20spaced%2C%20millimeter%5Cu2010sized%20electrodes%20embedded%20in%20silicone%20rubber.%20Their%20mechanical%20rigidity%20and%20fixed%20electrode%20spatial%20resolution%20are%20common%20shortcomings%20reported%20by%20the%20surgical%20teams.%20Here%2C%20advances%20in%20soft%20neurotechnology%20are%20leveraged%20to%20manufacture%20conformable%20subdural%2C%20thin%5Cu2010film%20ECoG%20grids%2C%20and%20evaluate%20their%20suitability%20for%20translational%20research.%20Soft%20grids%20with%200.2%20to%2010%5Cu00a0mm%20electrode%20pitch%20and%20diameter%20are%20embedded%20in%20150%5Cu00a0%5Cu00b5m%20silicone%20membranes.%20The%20soft%20grids%20are%20compatible%20with%20surgical%20handling%20and%20can%20be%20folded%20to%20safely%20interface%20hidden%20cerebral%20surface%20such%20as%20the%20Sylvian%20fold%20in%20human%20cadaveric%20models.%20It%20is%20found%20that%20the%20thin%5Cu2010film%20conductor%20grids%20do%20not%20generate%20diagnostic%5Cu2010impeding%20imaging%20artefacts%20%28%3C1%5Cu00a0mm%29%20nor%20adverse%20local%20heating%20within%20a%20standard%203T%20clinical%20magnetic%20resonance%20imaging%20scanner.%20Next%2C%20the%20ability%20of%20the%20soft%20grids%20to%20record%20subdural%20neural%20activity%20in%20minipigs%20acutely%20and%20two%20weeks%20postimplantation%20is%20validated.%20Taken%20together%2C%20these%20results%20suggest%20a%20promising%20future%20alternative%20to%20current%20stiff%20electrodes%20and%20may%20enable%20the%20future%20adoption%20of%20soft%20ECoG%20grids%20in%20translational%20research%20and%20ultimately%20in%20clinical%20settings.%22%2C%22date%22%3A%2205%5C%2F2021%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fadvs.202003761%22%2C%22ISSN%22%3A%222198-3844%2C%202198-3844%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fadvs.202003761%22%2C%22collections%22%3A%5B%22QWCYR4J9%22%2C%222E6FW5HR%22%2C%22HSR6CV29%22%5D%2C%22dateModified%22%3A%222024-09-05T13%3A24%3A41Z%22%7D%7D%5D%7D
Martinelli, E., Akouissi, O., Liebi, L., Furfaro, I., Maulà, D., Savoia, N., Remy, A., Nikles, L., Roux, A., Stoppini, L., & Lacour, S. P. (2024). The e-Flower: A hydrogel-actuated 3D MEA for brain spheroid electrophysiology. Science Advances, 10(42), eadp8054. https://doi.org/10.1126/sciadv.adp8054
Mariello, M., Rosenthal, J. D., Cecchetti, F., Gao, M., Skrivervik, A. K., Leterrier, Y., & Lacour, S. P. (2024). Wireless, battery-free, and real-time monitoring of water permeation across thin-film encapsulation. Nature Communications, 15(1), 7443. https://doi.org/10.1038/s41467-024-51247-3
Wu, K., Mariello, M., Leterrier, Y., & Lacour, S. P. (2024). Optical Monitoring of Water Side Permeation in Thin Film Encapsulation. Advanced Materials, 36(24), 2310201. https://doi.org/10.1002/adma.202310201
Fallegger, F., Trouillet, A., Coen, F.-V., Schiavone, G., & Lacour, S. P. (2023). A low-profile electromechanical packaging system for soft-to-flexible bioelectronic interfaces. APL Bioengineering, 7(3), 036109. https://doi.org/10.1063/5.0152509
Song, S., Fallegger, F., Trouillet, A., Kim, K., & Lacour, S. P. (2023). Deployment of an electrocorticography system with a soft robotic actuator. Science Robotics, 8(78), eadd1002. https://doi.org/10.1126/scirobotics.add1002
Fallegger, F., Trouillet, A., & Lacour, S. P. (2023). Subdural Soft Electrocorticography (ECoG) Array Implantation and Long-Term Cortical Recording in Minipigs. Journal of Visualized Experiments, 193, 64997. https://doi.org/10.3791/64997
Borda, E., Medagoda, D. I., Airaghi Leccardi, M. J. I., Zollinger, E. G., & Ghezzi, D. (2023). Conformable neural interface based on off-stoichiometry thiol-ene-epoxy thermosets. Biomaterials, 293, 121979. https://doi.org/10.1016/j.biomaterials.2022.121979
Nayir, S., Lacour, S. P., & Kucera, J. P. (2022). Active force generation contributes to the complexity of spontaneous activity and to the response to stretch of murine cardiomyocyte cultures. The Journal of Physiology, 600(14), 3287–3312. https://doi.org/10.1113/JP283083
Kim, K., Van Gompel, M., Wu, K., Schiavone, G., Carron, J., Bourgeois, F., Lacour, S. P., & Leterrier, Y. (2021). Extended Barrier Lifetime of Partially Cracked Organic/Inorganic Multilayers for Compliant Implantable Electronics. Small, 17(40), 2103039. https://doi.org/10.1002/smll.202103039
Schiavone, G., Vachicouras, N., Vyza, Y., & Lacour, S. P. (2021). Dimensional scaling of thin-film stimulation electrode systems in translational research. Journal of Neural Engineering, 18(4), 046054. https://doi.org/10.1088/1741-2552/abf607
Vachicouras, N., Tarabichi, O., Kanumuri, V. V., Tringides, C. M., Macron, J., Fallegger, F., Thenaisie, Y., Epprecht, L., McInturff, S., Qureshi, A. A., Paggi, V., Kuklinski, M. W., Brown, M. C., Lee, D. J., & Lacour, S. P. (2019). Microstructured thin-film electrode technology enables proof of concept of scalable, soft auditory brainstem implants. Science Translational Medicine, 11(514), eaax9487. https://doi.org/10.1126/scitranslmed.aax9487
Shur, M., Fallegger, F., Pirondini, E., Roux, A., Bichat, A., Barraud, Q., Courtine, G., & Lacour, S. P. (2020). Soft Printable Electrode Coating for Neural Interfaces. ACS Applied Bio Materials, 3(7), 4388–4397. https://doi.org/10.1021/acsabm.0c00401
Paggi, V., Fallegger, F., Serex, L., Rizzo, O., Galan, K., Giannotti, A., Furfaro, I., Zinno, C., Bernini, F., Micera, S., & Lacour, S. P. (2024). A soft, scalable and adaptable multi-contact cuff electrode for targeted peripheral nerve modulation. Bioelectronic Medicine, 10(1), 6. https://doi.org/10.1186/s42234-023-00137-y
Fallegger, F., Schiavone, G., Pirondini, E., Wagner, F. B., Vachicouras, N., Serex, L., Zegarek, G., May, A., Constanthin, P., Palma, M., Khoshnevis, M., Van Roost, D., Yvert, B., Courtine, G., Schaller, K., Bloch, J., & Lacour, S. P. (2021). MRI‐Compatible and Conformal Electrocorticography Grids for Translational Research. Advanced Science, 8(9), 2003761. https://doi.org/10.1002/advs.202003761